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Wigner Crystallization and Its Relation 
to the Poor Decay of Pair Correlations 
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We study various consequences of crystalline ordering in one-component 
(ordinary and surface) plasmas of arbitrary dimension, especially its relation to 
the poor decay of the pair correlation function. We considerably improve and 
presumably optimize the various known bounds on its decay at infinity and 
scrutinize the usual arguments claiming absence of crystallization in two-dimen- 
sional plasmas. 

KEY WORDS: Wigner crystallization; one-component Coulomb plasmas; 
Mermin argument. 

1. I N T R O D U C T I O N  

In contrast  to systems of classical particles interacting via short-range 
potentials, where crystallinity is ruled out by the original Mermin argu- 
ment  in one or two dimensions, ~ matters are not  so t ransparent  in the 
case of  long-range interactions (e.g., Coulomb) .  In fact, there exists an old 
conjecture by Wigner  (2) that  electron systems may crystallize at sufficiently 
low temperatures. 

This has been rigorously confirmed by Kunz  for the one-dimensional  
ordinary jellium (3) and is due both  to the peculiar properties of the one- 
dimensional  Cou l om b  potential,  V ( x ) = - 2 ~ q  2 Ixl, and the obvious 
absence of  transversal phonons.  In higher dimensions two types of  phonons  
exist, where the longitudinal branch turns out  to be harmless, while the 
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transverse ones exhibit the typical k 2 singularity, which, at least in 
harmonic approximation, rules out crystallinity in d =  2 due to the usual 
Peierls argument. (4] 

In more recent times there have been various attempts to go beyond 
the harmonic approximation by employing generalizations of the above- 
mentioned Mermin argument. A first step in this direction is due to Baus, (5) 
who managed to incorporate the effects of the neutralizing background into 
various quantities, e.g., the structure factor S(k). The essential ingredient 
is, however, an observation made independently by Chakravarty and 
Dasgupta (6/ and Alastuey and Jancovici <7/ that it is in fact the transverse 
phonons which matter and that one has to disentangle them from the 
longitudinal ones in the Mermin inequality. This was not done, e.g., in the 
paper by Baus, so that the crystallinity of neither ordinary nor surface 
jellium systems could be ruled out. 

In ref. 6 the authors started with particles interacting via the three- 
dimensional Yukawa potential, being captured on a two-dimensional sur- 
face, and made the transition to the 1/r potential after the thermodynamic 
limit (TL) has been taken. In ref. 7 the two-dimensional surface jellium is 
treated for the special case of a triangular lattice with periodic boundary 
conditions. The authors admit, however, that several manipulations and 
limiting procedures are not completely rigorous. 

In a subsequent paper Martinelli and Merlini (8] tried to circumvent 
these problems for the two-dimensional ordinary jellium, i.e., V(r)= 
- 2 q  2 In Ir[, by replacing possibly uncontrollable limit procedures with a 
decay assumption for a certain pair correlation function. However, as we 
will demonstrate in the following, a closer inspection shows that the pair 
correlation function employed by them does not decay at all in a crystalline 
state, which spoils their whole reasoning at a crucial point! 

To put it in a nutshell: the question of whether crystalline states can 
exist appears, on a more rigorous level, to be not fully settled for the one- 
dimensional surface jellium IV( r )~  in Ir]] and in two dimensions for the 
general case both of ordinary and surface jellium [ V( r ) ~ l n  Irl, resp. 
~ l / [ r l ] .  In the following we will reexamine this interesting question, 
exploiting (as did Martinelli and Merlini) the well-known connection 
between crystallinity and poor clustering of particle correlations and extend 
our methods also to the case d =  3 (and, in principle, to arbitrary d). 

As to this wider context, see, e.g., ref. 9, where the BBGKY hierarchy 
has been employed, and for the situation of shorter ranged interactions, 
also refs. 10 and 11, where other approaches have been used. In any case 
one should, however, remark that, typically, all strategies which do not 
employ the socalled Bogoliubov inequality do not lead to optimal results 
in this (however special) situation. Before we embark on the main subject 
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matter of the paper, we mention a very recent review of the whole field of 
Coulomb systems by Martin. (~2) 

As a first step, we develop in the following section a general method 
to calculate in an effective way the overall potential energy of jellium 
systems for periodic boundary conditions leading to modified effective pair 
potentials along the lines of ref. 13. In Section 3 we investigate the pair 
correlation function as suggested by Martinelli and Merlini and show that, 
in contrast to their assumption, it definitely does not decay in a crystalline 
state, but becomes asymptotically nontrivially periodic. We then treat in 
Section 4 in successive order the two- and three-dimensional Coulomb 
plasma and the two- and one-dimensional surface jellium, one of our main 
ideas being to split off the periodic contribution of the avove-mentioned 
correlation function and analyze its details in k space rather than position 
space. 

Our results are the following: If 

((a) 
IP~,)A(r~, r2)' < t((~ ] 

k(d) 

[r  1 _ r21 - ( 1  +e )  

i r  1 _ r2  [ - 0 / 2  +e)  

i r l _ r 2  [ (i/2+~) 

Irl-r21 ~ 

(1.1) 

uniformly in A (with A, the volume of the system, to oo) for (a) two- 
dimensional ordinary jellium, (b) three-dimensional ordinary jellium, (c) 
two-dimensional surface jellium, and (d) one-dimensional surface jellium, 
then the corresponding equilibrium state cannot be crystalline. Here p(~) is 
the truncated two-point function, which definitely has to decay in a pure 
phase on a priori grounds. Thus, as a direct consequence of (1.1)(d), one- 
dimensional surface jellium can never crystallize. 

2. EFFECTIVE POTENTIALS FOR C O U L O M B  S Y S T E M S  

As we study Coulomb systems with periodic boundary conditions, the 
appropriate first step consists in solving the Poisson equation for N point 
particles, each carrying charge q and being immersed in a homogeneous 
neutralizing background, by Fourier methods. 

For ordinary jellium (~3) the Poisson equation reads 

IN l AqS(r) = -4~q ~=~ 6(r -  r~)- N/A (2.1) 
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the solution being 

r ~ y" 1/kZ.exp[ik(r-r~)], keA* (2.2) 
k vaO i 

the reciprocal lattice to A. 
The corresponding potential energy is 

- 1/2 f ddr y ,  6(r -- r , ) -  Vc(r -- r,) (2 .3)  
i 

the second (formally infinite) term of which represents the usual self-energy 
counterterm occurring in the electrodynamics of ideal point charges. 

Inserting (2.2) into (2.3), we get 

with 

U=Uo+l/2 ~ 
i ~ j  k ~ O  

4rcq2/A . 1/k 2. exp[ik(r,- rj)] (2.4) 

U~ := lim N/2"[ k o 4rtq2/A" l/k2"eikr- Vc(r)l 

Vc(r) being the standard solution of A V(r)= --4rtq26(r). 
In the case of d-dimensional surface jellium we solve the (d+ l ) -  

dimensional Poisson equation ~ 

(A + O2/Oz2) gg(r,z)= -47tq l ~ 6 ( r - r , ) -  N/A].6(z) (2.5) 

The solution is 

q~(r, z) = go o + ~, f dtc 2q/A. 1/(k 2 + ~c2) - ~, exp[ik(r - ri)]-exp(i~z) 
k ~ O  i 

= ~ o +  ~ 2rcq/A.1/[kl.~exp[ik(ri-rj].exp(-Ikl.lzl) (2.6) 
k v ~ 0  i 

The corresponding potential energy reads 

U= Uo + 1/2 ~ ~, 2rtqZ/A . 1/Ik[- expfik(ri- rj)] (2.7) 
i v ~ j  k ~ 0  
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3. THE M A R T I N E L L I - M E R L I N I  A R G U M E N T  REVISITED 

We do not intend to repeat the Mermin argument for Coulomb 
systems as used in refs. 5-8 in every detail, but restrict ourselves to the 
necessary minimum of notions and notations. The usual point of departure 
is the modified Mermin inequality: 

[ ( K +  k) e,]  2 lpKI 2 
S(K+k)>~ (ket)2+D,t(k) (3.1) 

e t is a unit vector pointing into an arbitrary direction which will be 
specified later. K is a vector of the reciprocal lattice G* of the crystalline 
state, which is presumed to exist in the TL, and k is chosen from its first 
Brillouin zone 0 A * =  L - I G  * (A being the L<fold copy of the unit cell of 
the crystal lattice). Here 

p(K) = ( N  -1 ~ exp(iKr,)) (3.2) 
i 

the Fourier transform of the particle density divided by N, 3 is assumed to 
be different from zero for at least one K r 0 in the TL if a crystalline state 
exists. 

To elucidate the physical meaning of S(q), we start from the averaged 
two-particle density 

pg(r , '= 1 / N . f A d r ' p ( 2 ) ( r ' , r ' - r ) = l l / N  ~ 6 ( r i - r j - r ) )  (3.3) 
i ~ j  

We transform this into an averaged charge-charge correlation (up to a 
factor q): 

ph(r) = pg(r) - p (3.4) 

Fourier transforming (F.tr.) ph(r), we get 

S ( q ) -  1 = F.tr.[ph(r)] 

= I / N . (  ~ e x p [ i q ( r , - r j ) ] ) - N 6 q  
\ i ~ j  

3 With the convention p(r)/p = Z eiKrp(K), implying p(K) = 1/N. SA p(r) e -~Kr dr. 
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The last quantity to mention is 

D,(k  ) = fl/N. ( ~ exp[ ik(r i -  rj) ] (e,Vi)(etV fl U) 

+ fl/N. f dr p(r)(etV) 2 Vex(r) (3.6) 

with U defined in (2.4) [resp. (2.7)] and Vex being an external field fixing 
the location of the crystal and which will be switched off after the TL has 
been performed. 

The term stemming from the exterior field does not contribute if the 
limits are taken in the stated order. The first term can be written as 

with 

fi/A. y' d)(p)(pe,) 2 [ S ( p -  k) - S(p)] 
p#O 

+ tip ~ OS(p)(pe,) 2 [6p k-(~p] 
p~O 

~ 4rcq2/p 2 

q~(p ) = ( 27rq2/i pl 
for ordinary jellium 

for surface jellium 

(3.7) 

For d #  1, e, can be chosen perpendicular to k. This eliminates the 
second term in (3.7). The remaining term can be expressed in position 
space as 

tiP f A dd h(r)(1 - c o s  kr)(e,V) 2 (~A(r) (3.8) 

with q~A(r) = 1/A . ~ o q ) ( k ) e i ~ "  the effective pair potential occurring in 
(2.4), (2.7). 

The strategy of Martinelli and Merlini has been to show that (3.8) 
goes a s  ~ k  2 In [k I for small k in the TL under the proviso that h(r) is both 
bounded and decaying ~<r -2 uniformly in A. However, this proviso is 
definitely not true for states exhibiting crystalline order in the TL. This can 
be seen as follows: We write 

ph(r) = 1IN. f A 

= 1IN. ;A 

dr' p(2)(r', r ' -  r ) -  p 

dr' p~)(r', r' -- r) + 1IN. 
JA 

dr' p~ p ( 1 ) ( r '  - r )  - p ( 3 . 9 )  
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Let A ~ oo and afterward r ~  oo. If the TL is attained sufficiently 
uniformly, 

rlin%~ 2im~ 1/X.fA dr' p(2lr, A(r, ,r,_r)=O (3.10) 

since in a pure phase p~)(rl, r2) has to decay in the difference variable 
(rl - r2) anyhow. 

In the TL the second term aquires the form (Co is the unit cell) 

1/(PCo) "f Co dr' p(1)(r') p ( 1 ) ( / /  - -  r) - p 

= p  ~ ip(K)lZe i~ (3.11) 
K r  

If the equilibrium state is nontrivially periodic, p(K)r  0 for at least one 
K S  0. Due to the uniqueness theorem of Fourier series, we can infer that 
in that case ph(r) is asymptotically nontrivially periodic as r ~ oo (i.e., not 
decaying!). This shows that the procedure of ref. 8 breaks down at a central 
point. In the following section we will develop a strategy which, among 
other things, circumvents this snag. 

4. I M P R O V E D  B O U N D S  FOR V A R I O U S  "'JELLIUM SYSTEMS'"  

In a first step we split off in ph(r) the term asymptotically oscillating 
in the TL, i.e., 

ph(~ "= 1/N.fA dr' p~l)(r') p(1)(r'-r) 

=p y~ Ip(k)12e -'kr (4.1) 
k • 0  

The corresponding contribution in S ( p ) -  1 is 

S(~ := F.tr.(ph(~ = N ]p(p)[Z _ N6p (4.2) 

and leads in (3.7) to the part 

fi/A. • r z [S(~ k ) -  S(~ 
p # O  

= tip ~ qS(P)(Pet) 2 t ip(p-k)]  2 -  ]p(p)l 2] 
p~SO 

= tip ~ (pe,)2 [p(p)[2 [qS(p+k)-~(p)] ,  
pv~O, --k 

with p e A* 

(4.3) 
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Assuming sufficient uniformity (as above) for A ~ 0% this goes over in the 
TL into 

~p ~ ( K e t ) Z p ( K ) p ( - K ) [ q S ( K + k ) - c b ( K ) ] ,  where K e G *  (4.4) 
Kv~0 

We now estimate (4.4) in the small-k limit both for ordinary and 
surface jellium. To this end, we expand ~ ( K + k ) - q ~ ( K )  into a Taylor 
series with remainder: 

~b(K+ k) - ~b(K) = (kV) q~(K) + 1/2. (kV) 2 ~ ( K +  Ok) (4.5) 

This leads in the two cases to: 

(i) r 

(kV) ~(K) = -41rq 2. 2kK/[K[ 4 

�89 a OS(p) = 4gq214(kp)2/[p16 - k2/lpq 4] 
(ii) q~(K)=2~zq2/[K[: (4.6) 

(kV) ~(K) = --2~q2kK/IKI 3 

�89 2 45(p) -- ~zq2[3(kp)Z/I pl 5 - k2/Ip[ 3] 

In both cases (kV) ~(K) is antisymmetric with respect to K and thus 
does not contribute in (4.4). Inserting (K+Ok)  for p, we have (with 
Lkl ~ Igl) 

[ (i) const-k:  IKI 4 (4.7) 
11/2- (kV) 2 ~ ( K +  Ok)l < {(ii) const, k 2 IK L -3 

Hence (4.4) can be estimated for small k as 

.<S(i)  const .k22K~01p(K)l  2IK1-2 (4.8) 
1(4.4)1--~ [(ii) const .k 2 2 ~ 0  IP(K)I 2 Ig1-1 

Remark.  Since we have explicitly used that e tk=O,  the above 
calculations hold only for d ~> 2. It will, however, turn out in the following 
that for d =  1 the above splitting of h(r) into a decaying and an oscillating 
part is not necessary. 

As to the remaining, now explicitly decaying part 

ph(d)(r) = p[h(r)  -- h(~ ] = 1/N.  f A dr' p(TZ)(r ', r' -- r) 

our procedure is comparable to the one in ref. 8. 

(4.9) 
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Note first that the decay of h(a)(r) as Irl ~ ~ is the same as the 
asymptotic behavior of p~)(rl, r2) in the difference variable r~ - r2 .  We 
now replace h(r) in (3.8) by h(d)(r) and treat the following four cases. 

4.1. Ordinary Jell ium; d = 2  

We assume that h(Jt(r) can be bounded uniformly in A both like 

C2 
[h(d)(r)[ -%< C1 and [h(a)(r)t ~ ir{1 +~-~, e > 0 (4.10) 

From the explicit form of ~oA(r), 

4nq 2 1 ei~r; keA* 

we get the following identity: 

1 (e,V) 2 q~ (e,Vr/c) 2 ~~ co(r/L ) 

(4.11) 

(4.12) 

(just as in ref. 8). 
In order to get a strong estimate of (4.12), one has to control 

the singularity of the above expression at the origin. The technical trick 
consists in subtracting a suitable function--which is given in closed 
form--from ~0c0 so that the difference is harmonic. This means especially 
(via '"elliptic regularity") that arbitrary derivatives remain bounded on C o . 
In the above case we have 

and therefore 

A~oco(r) = - 4 n q  2 [5(r) - ~o 

Remark. 
contrast to their claim, does not lead to a harmonic function. 

From (4.13) we now infer 

1 I ( r )  L nq2(L)2J _<C ~ (i) ~(e,Vr/L) 2 (,~ Z +2q21n - - ~ o  "~L-Y 

1 [ 2 q 2 l n L n q  2 ( i i ) - ~ ( C t V r / L )  2 ( L ) 2 ]  ~ - t  --C5 
---~-0 L --5 

nq 2 ) 
A ~Pco(r)+2q21nprl--~o r2 =0 (4.13) 

Note that the choice made by Martinelli and Merlini, (8~ in 

(4.14) 

822/58/5-6-25 
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and therefore 

C C' 
I(e,V) 2 ~PA(r)[ ~ 7 + L -~  (4.15) 

In a last step we have the following estimate: 

f A d2r -- cos q~A(r) h(d)(r)(1 kr)(etV) 2 

<" Al fAd2r ~rl lkt "]rl ~ +  A2 fl~l<~l/lk ~ 

+A3 d2r = O([kl) 
[r] ~ l / ]k  I [r] r 2 

1 k2r2 1 d 2r ~] r -5 

(4.16) 

as Ik[ ~ 0 uniformly in A. The conclusion is 

K 2 1  S(K+k)>~const'(Ke,) 2 IP( )[ ~1 in the TL (4.17) 

In (4.10) we assumed an upper bound on the decay of h(d)(r). We are now 
able to show by employing (4.17) that surprisingly the poor decay of (4.10) 
is still too fast to allow the existence of a p(K) r 0 for a K r 0! To this end, 
we proceed as follows: In a first step we extract that part from S(K+ k) 
which stems from ph(~ Pk SKeO IP(K)] 2 e-mr [see (3.11)], having the 
form (now with p e [R 2) 

S(~ = const.  ~' tp(K)l 2 6 ( p -  K) (4.18) 
K4-0 

This part evidently does not contribute in (4.17). 
We then introduce a smooth nonnegative cutoff function f~(k), 

localized in an e-neighborhood of k = 0. 
Since the usual Mermin argument relies on nonintegrable singularities, 

we rewrite (4.17), with S (d) := S -  S ~~ as 

k ,A(k )  aL(k )  s(d)(K+ )~->~cons t ' (Ke t )  2 IP(K)I k 2 (4.19) 

Integrating now with respect to k, we get on the lhs 



Wigner Crystallization 1175 

1" f~(k) + I d2kL(k) J "d~k[S(dl(K+k)- J~-(- ~' ~1 

f d2r . 8 ,2, f~(k) = eiKrh(d)(r) F(r) + J a  K 

1 1 
<~ al + a2 I d2r ol~l> Ro tr[ 1+~ lrl < 0o (4.20) 

where F(r) is, up to a multiplicative constant, the Fourier transform of 
f~(k)/lk[, which, by asymptotic Fourier analysis (cf., e.g., ref. 15), behaves 
as Irl 1 for large Irl. On the other hand, an integration with respect to k 
would lead to an infinite rhs in (4.19) if ]p(K)p :A0 for some K:A0. In 
other words, crystallinity is incompatible with a decay of Ihtd)(r)l < 
Irl (~+~), e>O! 

4.2.  Ord inary  Je l l ium;  d = 3  

We now assume uniformly in A 

Ih(d)(r)l ~ 61 

Instead of (4.12) we get 

C2 
and Ih(a)(r)[ <~ irl3/2+~ (4.21) 

(etV) 2 (Oa(r)= (1/L3)(e,Vr/L) 2 (Pco(r/L) (4.22) 

Among other things, 2 In Ir] in (4.13) has to be replaced with - l / I r ] ,  and 
one is finally led to the estimate 

C C' 
](e,V) 2 (PA(r)] ~< [-~5 q- ~3 (4.23) 

The analog of (4.16) is 

A d2r h(d)(r)(1 -- cOS kr)(e,V) 2 r 

<<-AafA d3r ~r@ [k13/2 ]r]3/2 ~5 

+ A2 frrj d3r r ~  k2r2 1 
.<l/Ikj II {rl 3 

d3r lr@ 2 1 + A3 
olrl > 1/'!kl Irl 3 

= O(Ikl 3/2) as {kl--*0 (4.24) 
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leading, in the TL, to the inequality 

S(d)(K + k) f~(k) >. f~(k) (4.25) ik~577,--const. (Ke,) 2 Ip(K)[ 2 ikl3 

Since the Fourier transform of f~(k)/lkl 3/2 behaves asymptotically as I r l -  3/2 
for large Irl, the k integral on the lhs is finite due to our assumption (4.21). 
As in (a) above, we arrive at the conclusion that crystallinity is incom- 
patible with a decay of Ih(a)(r)l < Irl o/z+~ 

4.3. Surface  Jell ium; at=2 

We assume that h~d)(r) can be bounded uniformly in A both like 

Ih(d)(r)l ~ C~ and Ih(d)(r)l < ~ - -  C2 
i r  I 1 /2+e 

(4.26) 

The effective potential qgA(r ) reads 

2rtq 2 ~ 1 ei~r 
~oA(r) = - - U  o ~ = ~ ( r ,  z = 0) 

with 

(4.27) 

2nq2 SF 1 e Ikl.l~i ~(r, 
A k% 

The potential ~A is introduced in order to exploit harmonicity arguments 
in d =  3 rather than d =  2. 

In analogy to case (a), we get 

(etVr)2~OA(r,z)=-~5(etVr/L)2(OCo(L,L) 

( Ar + ~az 2) (O co(r, z) = --4~q2 [ a(r) -- ~--~o] a(z) 

(ArJl_~2 q2 2rcq2 ]zl] = 0  

(4.28) 

and therefore 

C C' 
](e,V) 2 (pa(r)l = ](etVr) 2 ~OA(r, z=O)l ~ ~L3 q-7~ ~r[ L (4.29) 
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As in (4.16), (4.24), this yields (with the same splitting of the integration 
domain) 

fAd2r h(a)(r)(1 - cos kr)(e,V) 2 (PA(r) ~ const.  Ikl 3/2 (4.30) 

uniformly in A. 
Proceeding as in (a), (b), we have now in the TL 

s("~(K+ k) A(k) _ A(k) lk I 1/-"'"~ ~ const-(Ke,) 2 Ip(K)l 2 k2 (4.31) 

Since the Fourier transform off,(k)/lk[ 1/2 behaves as Jr]-3/2 for large Er], 
(4.26) leads to a contradiction if p(K)r 0 for some K r  0. In other words, 
crystallinity is excluded for [h(d)(r)[ < Irl (1/2+~)1 

4.4. Surface Jellium; d = l  

As mentioned above, a disentangling of directions parallel and 
orthogonal to k is of course not possible in d = 1. On the other hand, it will 
turn out that this procedure--as the splitting of h into h (~ + h(d)--is not 
necessary anyhow. Instead we only use uniform boundedness of h as 
A~[R.  

Again we start from expression (3.7): 

27rq 2 
- T - ~  ~ Ipl [S(p-k)-S(p)]+2rcq2fip ~ IPl(6p ~-Op) 

p~O pr 

fA d2 
= tip drh(r)(1--coskr)~rZ~PA(r)+27zq2~p [k[ (4.32) 

The same harmonicity arguments as in (4.27) and what followed lead to 
the estimate 

and we get 

f f . •2  (,O A ( r ) C C ' <~r-5+F (4.33) 

fAdr h(r)(1 -- cos kr) ~ qoA(r) = O(Ikl) (4.34) 

as [k[--, 0 uniformly in A. 
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The analog of (4.17) reads now 

S(K+ k) >1 const- K 2 tp(K)] 2 1 

the rhs of which is already nonintegrable at k = 0. 
Thus, crystallinity is excluded by standard arguments. 

Requardt and Wagner 

(4.35) 

5. S U M M A R Y  

As already remarked in the introduction, our analysis has shown that, 
in order to exclude crystallinity, one indeed arrives, by means of the techni- 
ques presented above, at the considerably stronger estimates 

Ip~) ( r l , r2 ) IG(a)  I r l - r 2 l  -(1+~) 

(b) ]rl-r21 -~3/2+~) 

(C) lrl--r2[ (1/2 + e) 

(d) tr, -- r2l ~ 

as compared to the older ones given in ref. 9, i.e., 

Ip~)l or [p~)l<~(a) Irl--r2l -(3+~) 

(b) krl-r2l -(4+~) 

(c) ] r l - r a ]  (3+~) 

(d) ] r , - r 2 ]  (2+e) 

The merit of the method of Martinelli and Merlini which we partly have 
employed in this paper is that it avoids uncontrollable manipulations with 
possibly ill-defined expressions. However, their approach contained a 
serious flaw due to the fact that the correlation function h(r) does not 
decay as Irl ~ oo. One of our contributions consists in the observation that 
h(r) can be naturally split into a nondecaying oscillatory and a decaying 
part which can be estimated separately in k (resp. r) space. Furthermore, 
we improve their approach to derive, up to logarithmic corrections, 
possibly optimal bounds also for the case d =  3 and for the surface jellia. 

As a last point we want to briefly comment on the observation of 
Alastuey and Jancovici (7) that a two-dimensional surface plasma should 
not be able to crystallize into a triangular lattice. To arrive at this conclu- 
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sion, the authors employed some extra hypotheses which, admittedly, look 
plausible from a physical point of view. Under this proviso they get an 
asymptotic behavior Dtt(k)~ C k  2 as  Ikl---+ 0, which excludes crystallinity 
via the usual Mermin argument. Their reasoning may be supported by 
their observation that the prefactor C turns out to be, in the however 
special case of a triangular lattice symmetry, a multiple of the excess 
internal energy per particle, which may be expected to remain finite if the 
thermodynamic limit exists at all. 

On the other hand, the definitely not decaying h(r), consisting of the 
oscillating h~~ and the (as we have shown above) exceedingly slowly 
decaying h~a)(r), appears in all relevant integral expressions of ref. 7 such as 
those for D,(k) or the internal energy per particle. This makes it necessary 
that very special cancellations have to take place in these integrals due to 
suitable oscillations not only of h(~ but also of h(J)(r)! That this may 
happen can be inferred from observ~/tions we made elsewhere in a related 
context (cf. ref. 17 p. 193 194, where the "freezing problem" was briefly 
adressed, or p. 202 in connection with the surface tension). 

Nevertheless, we must admit that we feel still a little bit uneasy, since 
intuition may well be deceiving in the case of quantities with a very slow 
decay. Thus it might happen that (e.g., due to effects of something like 
"observables at infinity") the "naive" energy per particle acquires some 
extra term. However, as long as the thermodynamic limit is not really 
under control, these considerations remain mere speculations. 

We conclude this paper with the remark that similar features [(non)~ 
analyticities and (non)integrable singularities] also occur in another field 
of current active research, namely the theory of liquid-vapor interfaces in 
d =  3 (cf. ref. 16 and references given there). 
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